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ABSTRACT

In this paper we use topological methods, in particular Morse theory, to

study the problem of finding spatial central configurations of the N-body

problem in R3 . The principal difficulty in applying Morse theory is that the

potential function is defined on a manifold on which there is the action of a

group which is not free. This suggests using the equivariant homology functor

in order to obtain the Morse inequalities which enables us to obtain an

estimate of the minimal number of spatial central configurations.
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SIGNIFICANCE AND EXPLANATION

An important problem in celestial mechanics is to find the central

configurations of the N-body problem. This problem is equivalent to looking

for critical points of the relevant potential function over a manifold on

which a qroup of symmetries acts.

The so-called collinear problem is well understood. While many important

results have been obtained about the N-body problem in the plane, as far as MW

know, there are no results about this problem in space.

In this paper -we use topological methods, in particular Morse theory and

the equivariant homology, to obtain a first estimate on the minimal number of

spatial central configurations.

Then, using known results for the collinear and planar problem we improve

this estimate and we- are able to give an inferior bound on the number of those

central configurations which are not planar in the sense that not all the

bodies lie on the same plane.
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CENTRAL CONFIGURATIONS OF THE N-BODY PROBLEM

Filomena Pacella

- INTRODUCTION -

In this paper we offer a first approach to the problem of finding spatial

central configurations of N bodies.

It is known, ([9], [11]) that, if ql,...,qN denote the positions of N

bodies with masses ml*...,mN respectively, this problem is equivalent to

finding the critical points of the potential energy:

v(q) = - l J
i<j lq i-q i I

restricted to a particular manifold.

When the bodies are on the same line this problem has been studied by

NF. R. Moulton who found that, for each value of m = (ml,...,mN) e R+, there

are exactly N- collinear central configurations.2

Regarding the planar problem there are many interesting results obtained

by J. I. Palmore using Morse theory ([51, [6], [7]).

More precisely, studying the homology of the configuration space, he

finds an estimate of the minimal number of critical points that V owns,

N
whenever m e R+ is such that the corresponding potential energy is a Morse

function, that is its critical points are non degenerate.

He explores also the case when V is degenerate and he proves that

N
V(q) is a Morse function for almost every m e R+. Moreover he examines some
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particular cases, like that of equal masses, computing exactly the number of

relative equilibria.

In our paper we consider the general case when the bodies are on the

space and are not bound to move on the same plane. We also use Morse theory

to investigate the number of central configurations, but in this case some

difficulties arise from the symmetries which act on the manifold on which V

is defined.

To be more precise if we call M this manifold we see that the group

0(3) acts over it and this action is not free. (1) This implies that M/0(3)

fails to be a manifold and we apply, instead of the classical Morse theory,

the equivariant version. In this theory the main tools are to compute the

equivariant homology of the manifold M (for the definition see section 2)

and to know the isotropy groups of the critical points of V.

Actually, in our case, it is just the difference between the isotropy

group of the collinear configurations and that of the other configurations

that allows us to get some information about the critical points of V. In

this way we obtain a first estimate of the minnimal number of central

configuration. Then, using also the information which comes from the planar

problem we get some better results and we are able to say that (for N ) 4)

there are some central configurations such that not all the bodies lay in the

same plane.

we would like to thank C. Conley for his encouragement in this research

and R. Yadell for many useful talks.

(1)
We say that the action of a group G on a space X is free if gx )f x,

Vx e X, Vg e G, g ' 1.
(2)

If x e x, the isotropy group Gx  in x is:
Gx = {g e G : gx - x}, where G is the group which acts on X.
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1. Preliminaries

Let q1,...,% e R3  denote the positions of N bodies with masses

m 1,..., mb respectively, and X c W3N the linear space given by:

x e R" I E mq, - 01 .

If A - '.) Aij C X is the set of the diagonals
i<j |

ij ...,qN) e X I qi - q i < j 4 N, then X*A is the

configuration space.

The potential energy V(q), (q - (ql,...,qN)) is the real valued

function defined by:

V(q1....q " - i I j
N < qi -q:

and the kinetic energy is:

S 1 2 1 * * 1 -1~q) 2 i;qi1 2<;,M;> - <pM p>I ~~ ~ /mX 1 20

where M ( . 1, 3 -0( 1 0 q M" and p= .\ . ro 3) ( 0 o /dt

Denoting by H(q,p) the Hamiltonian function:

1 -1
H(q,p) = j <pM p> + V(q)

we have the following differential equations:

pjM M p
(1.??

aH 3V

-- -

We say that q - (q 1 ''..'qN) is a "central configuration" if there

exists a scalar valued function 4(t) such that the solution of the problem

(1.1) with initial values (q,O) is in the form *(t)q.

It follows immediately from the definition that if q is a central

configuration then Cq Is also for any C e t. Therefore we may assume that

each central configuration belongs to the "mass ellipsoid"t

Ik -3-



& = {q e X : <q,Mq> - }.

Then it is easy to see that the critical points of V(q) restricted to

&\(& 0 A) - &\A correspond in a I - 1 fashion with the central

configurations. So the problem of finding central configurations is

equivalent to looking for the critical points of V(q) over 9\A.

2. Morse inequalities

The aim of this section is to explore the critical points of V(q) on

&\ A using Morse theory.

A first thing to be observed is that the fact that &\A is not compact

is not an obstacle because, since V(q) goes to - in each point of A,

the critical points of V(q) are bounded away from the set A (for more

details see (8]).

Then we consider the symmetries which act on & and which are given by

the diagonal action of the group 0(3) (matrices 0 1 0 T - id).

Here diagonal action means:

eq - (0q1,...,eqN q e &, 0 e 0(3)

At this point we observe that the set & is homotopically equivalent to the

sphere S3N -4 on which 0(3) acts diagonally leaving it invariant.

The potential function V(q) is also invariant with respect to the

action of 0(3) and A as well. So, because we are interested in the

topological-algebraic structure of &\A we can consider the problem in the

set

S 3-4\A M
0(3) 0(3)

But in this case the action of 0(3) on the manifold M is not free. In

fact, there are no fixed points by this action, but the isotropy group is

-4-
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if the configuration (ql,...,qI) is such that all the bodies are on the same

line, instead it is the identity if this does not happen, that is if there

exist i, j such that qi is not parallel to q, and qi # 0 le q3.

K
This implies that the space 0-- fails to be a manifold and we can use,

instead of the classical Morse theory, the equivariant version which is

obtained by replacing the homology function H, by the equivariant homology
0(3)

function H. This extension of Morse theory involves finding a

contractible space U on which the group 0(3) acts freely and computing the

Mxu
homology of the space - which is a manifold because the action of 0(3)

003)

is free over the product N x U. Then the Morse inequalities become:

(2.1) °(3(V) P 0°3)CM) + (l+t)Q (V)
( 2 )0(

where Qt(V) is a polynomial with positive coefficients, PO( 3 ) M is thet
KxU _0(3)9) s h

Poincar' series which represents the homology of 0(3 and M V) is the

Morse series given by: x
(2.2) 1t°1 3 )(V) " P t z(3)

t z

where Z is a critical orbit of V, Z - 0(3)/H, and X is the dimension ofz
+

the unstable manifold V Z, that is the dimensionn of the part of the normal

bundle VZ spanned by the positive eigen-directions of the Hessian of V.

So, as first step we need to know the equivariant 0(3) - homology of the

manifold M which is qiven by the homology of the space 0 (3) I where

VW, U V is a contractible space which is the union of the (ortho-
3n,3

normal) 3-frames in IP (n)3) and the action of 0(3) is free on it (see

[41 ).

In order to do this we have to compute the homology of M. This is done

by observing that the space M is homotopically equivalent to the space

r - q e 3, q. # j  for i ') -

In fact, we can construct a fibration:

I -5-



R3

+1 
3

e \miq- 01 X\A

where I is the map which carries the center of mass to the origin. Because

the fiber is contractible X\ A is homotopically equivalent to R 3N-3\ A and

hence to N - S 3 N- 4 \A.

The space 7.( 30) has been studied in (3] and its homology with any

coefficients is the follows:

3r2N- 2
.(N(3))a- H HS v'vS)

k=1
k times

where 9 is the tensor product and v the wedge sum. So, in short the

Poincar& series of 'N(W3 ) is:

(2.3) P (FN( 3 3 Pt(M) - Oft2 )(1+2t 2 ) ... (1 + (N-1)t 2

Then to compute the equivariant homology of FN(R 3 ) (or M) we can look at

the fibration:

FN(R 
3

3
+ (R3

33xF

0(3)

V
G 3 = B(31
.',3 0(3)

where p is the projection and G is the union of the
G n3 , n3

Grassmann varieties G n 0(3) of 3-dimensional subspaces of R7(n>3) and
n,3 0(3)

is the classifying space of 0(3).

Knowing that the homology of BO(3) (see [4]) with rational coefficients

is given by the series:

-6-



P (90(3)) -
t m-& .0

from (2.3) (110]) it follows that the equivariant Poincare' polynomial of

'N(R3 ) (and hence of s 3- \f A K) is:

(2.4) pt(N R3) Ot 2)(1+2t 2 0. ( + (N-1)t 2

From (2.2) and (2.4) we can state the following:

THEORSM 2.1. For each system of N bodies. N > 3, vith masses

such that the potential enera V(q) is a Morse function, ye have:

A2 2 2
(2.5) t Z 0(3) W- Of+t )(1+2t 0. (1 *(N-1)t )+ C1+t)Q (V)

where z is any critical orbit for V restricted to M/0(3) and Z has the

same meaning as in (2.2).

To conclude this section we want to observe that, because Qt(V) has

positive coefficients, (2.5) represents the equivariant version of the Morse

inequalities.

Moreover, if Z is an orbit given by 0(3)/H, (H is the isotropy group

of any point of Z) computing the homologry P 0() W is equivalent to
t

computing the series Pt(H) W P t(BR), where BH is the classifying space

of H.

3. Main Results

In this section we will use the Morse inequalities to obtain some

estimates of the number of the central configurations of V(q), when V(q)

is a Morse function.
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We begin by observing that from Moulton's results ((9], [11] ) we already
N!

know that there are L-- critical points of VIS given by configurations with

the N bodies on the same line.

For each of these configurations the isotropy group is S1, so,

according to the remark made at the end of the previous section, the total

contribution of these critical points in the Morse series is the following:

NI/2 a, N/2a
(3.1) ) -

i 1  t i=1 1-t2

where BS is the classifying space of S 1 whose homology is given by the

1 +
series - , and a. is the dimension of the unstable manifold v Z.

1_2 'i I 11 -t

corresponding to each Moulton configuration.

It is better to remark, at this point, that each critical orbit coming
1

from a Moulton configuration is a 2-dimensional manifold given by 0(3)/S 1

Instead, for each critical point of VIS different from these the

isotropy group is the identity. Hence its contribution in the Morse poly-
x
znomial is given just by a term like t , where A is the dimension of thez

unstable manifold of the 3-dimensional critical orbit Z, corresponding to

it, which looks like 0(3).

Now, we compute the numbers a. of (3.1).
i

PROPOSITION 3.1. If q - (ql,...,qN) is a critical point of VIM given by a

collinear configuration, then the dimension of the unstable manifold of its

orbit Z = 0--) is equal to 2N-4.
1

SProof. Consider the submanifold Y of M defined by the collinear

configurations. This represents a submanifold of M of dimension N-2.

If q is a critical point of VIM, belonging to Y, then the Hessian

of VIM is negative definite on the tangent space T qY which is N-2 dimen-

sional.

--



On the other hand the Hessian of V1M is positive definite in each

direction normal to Y. Then, recalling that M is 3N-4 dimensional and

that the orbit Z of q is a 2-dimensional manifold in M, we get the

assertion.

For the planar problem there is not a precise estimate of the exponent

Xz, but using the results of (5] we can obtain a lower and an upper bound.

PROPOSITION 3.2. If q m (q1,...,qN) is a critical point of VIM given by a

planar configuration, then for its critical orbit Z = 0(3) we have:

(3.2) N-3 4 XZ • 2N-5 .

Proof. The submanifold X of M given by the planar configurations has

dimension 2N-3.

This submanifold is invariant with respect to the diagonal action of

Si, (the group of rotations in the plane), and this action is free over X.

So, to every planar central configuration there corresponds a 1-

dimensional critical manifold Z' for the potential defined on X.

On the other hand to each planar central configuration there corresponds

also a 3-dimensional critical manifold Z" for the potential defined on M

which is 31N-4 dimensional.

In each direction normal to X the Hessian of VIM is positive

definite.

Moreover, (see (51), the Hessian of VIX  is negative definite in at

least N-2 directions normal to '. So there are at least 3N-7 - (2N-4)

W-3 directions in which the Hessian is positive definite and these directions

cannot be more than 3N-7 - (N-2) = 2N-5. From this (3.2) follows.

-9-



Now, using these two Propositions and (3.1) and (2.5) we are able to give

some estimates of the number of central configurations of N-bodies.

First of all from (3.1), (2.5) and Proposition 3.1, we can rewrite the

Morse inequalities in this way:

A 2N-4 2 2 2
+ NI t (1+t )(1+2t )6*6(1 + (N-1)t2 1 +ZL Y t + 2 I-2 I-

% i 1-2

(3.3) O t21

+ (l+t)Q(t) iCN-2 + (lft)Q(t)

where 0 4 • 3N-7, y'r is the number of critical orbits (which do not come
zz

from collinear configurations) with dimension of the unstable part of the

normal bundle equal to X and 8. are the Betti numbers.(3)zi

N-2
Note that I B N > 3.

i=O 2

From (3.3), recalling that Q(t) has positive coefficient we can deduce

the following:

TREOREM 3.1. Let ml,...,mN be the masses of N-bodies such that the

potential energy V(q) is a Morse function. Then, if y2i is the number of

critical orbits of VIS  whose unstable manifold has dimension 2i, we have:

(3.4) Y2 i )  1 + +2 +*+ 0 i < N-2

(3)
The numbers B. can be computed by this formula:

i
I N-K

K=O

where (-)P-qS; is the number of permutations of p elements with q
cycles. The numbers Sq are called Stirling numbers of the first kind.

p

-10-



where B are the Betti numbers previously defined.

(3.4) gives a first estimate of the minimal number of critical points

that V(q) has on M.

An important consequence of (3.4) and Proposition (3.2) is that,

whenever 2i < N-3, the configuration whose orbit has the dimension of the

unstable manifold equal to 2i cannot be planar but need to be spatial.

The number of these configurations increases as N + +-.

For example, for N-4, we can say that there exists at least one

configuration whose orbit has the dimension of the unstable manifold equal

to 0 and which cannot have all the four masses positioned on the same

plane. This configuration corresponds to a tetrahedron.

For N-6 we can say that there is at least one spatial configuration

whose orbit has the dimension of the unstable manifold equal to 0 and at

least 16 different spatial orbits for which this dimension is equal to 2.

Now, without going into details, we want to mention some other

consequences which come from (3.3) and Proposition 3.2 and which improve

Theorem 3.1.

We know from the results of [5], [61, [7] what the minimal number of

(4)
planar central configurations is and what their indexes 

are.

Then, knowing that in each direction normal to X the Hessian of VIM

is positive definite, we can compute the right exponent that each of these

configurations carries into (3.3). Moreover, considering the action of

0(3) on these planar configurations, we can compute their effective number as

(4)
If X is the submanifold of M given by the planar configurations, the

index of V restricted to X/S 1  1 i in a point q e x is the maximal
dimension of the subspace of T X on which the Hessian of V is negative
definite. -&

-11-



orbits on the manifold M. So doing, and considering also (3.4) we can see

that, in order to find a polynomial Q(t) with positive coefficients which

satisfies (3.3), there must be other configurations different from those

already computed.

For example for 5 equal masses we discover that there is at least one

configuration whose exponent in (3.3) is equal to 1 and which, in virtue of

Proposition 3.2 (N-3=2) cannot be planar. To explain this idea better we

conclude by examining the case of 4 equal masses.

From [6] we know that, for the problem on the plane, there are exactly

146 classes of relative equilibria, given by 12 Moulton classes with index

2, 6 square configurations with index 0, 8 equilater triangles with a mass

at each vertex and the 4th mass at the center, with index 2, 24 isosceles

configurations with a mass at each vertex and another one in the interior on

the axis of symmetry, 96 given by two pair of scalene configurations with a

mass at each vertex and one in the interior.

Except for the Moulton case, when we consider these classes of relative

equilibria as critical orbits on M, we see that, because of the action of

0(3), their number is just half of the previous one. Moreover, the number of

unstable directions for each of these orbit increases of I going from the

planar problem to the space.

The number of unstable directions for each Moulton critical orbit is

2N-4=4. So we have 27 critical points of VI, with exponent 1, 36 with

exponent 2, 4 with exponent 3 and 12 with exponent 4.

Filling in (3.4) with these numbers we obtain that there exist 2 other

different critical orbits with exponent 0 which correspond to a unique

spatial configuration given by a regular tetrahedron.

-12-
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